Chemistry and Microphysics of the Troposphere: Global Emissions Inventories

Carmen M. Benkovitz, M. Altaf Mubaraki and Ernest R. Lewis

Environmental Chemistry Division Department of Applied Science Brookhaven National Laboratory Upton, NY 11983

Anthropogenic Sulfur Emissions

- **★** Collaborative effort with Canadian ORTECH Environmental under IGAC/GEIA.
- ★ Reference year: 1990.
- **★** Specifications
 - **#Global coverage.**
 - **#Seasonal.**
 - **#Total emissions by country and sectors.**
 - **#Major point sources separated from minor point sources and area sources.**
 - #Emissions by sectors gridded to $1^{\circ} \times 1^{\circ}$.
 - **#Emissions speciated to SO₂ and primary sulfate.**

Anthropogenic Sulfur Emissions

- **★** Default inventory: EDGAR 1990 inventory, Olivier et al., 1995.
- * Regional inventories currently available:

```
#U. S.: USEPA inventories.
```

- **#Canada: AES inventories.**
- **#Australia: F. Carnovale, personal communication.**
- **#New Zealand: H. Plume, personal communication.**
- **#Europe: CORINAIR.**
- **#Asia: RAINS inventories.**
- #Russia: A.G. Ryaboshapko.
- **#Mexico: partial inventories available from:**
 - ► Mexico Air Quality Research Initiative (Lead: DOE).
 - ► BRAVO (Lead: EPA).
- ★ Inventory available: fall 1999.

Source Sectors for GEIA Anthropogenic SO₂ Inventory

Main source	Sector division	Source type
Power generation	Power generation	Major
Fuel use	Industry	Minor
	RCO	Area
	Incineration	Area
Transport	Road	Mobile
	Non-road	Mobile
	Air	Mobile
	Shipping	Mobile
Ind. processes	Iron & Steel	Major
	Copper	Major
	Lead	Major
	Zinc	Major
	Aluminum	Major
	Chemicals	Minor
	Cement	Major
	Pulp & paper	Minor
	Other	Minor
Landuse	Deforestation	Area
	Savannah	Area
	Agr. waste burning	Area

Anthropogenic Emissions of S for 1990

EDGAR Version 2.0

Dimethyl Sulfide (DMS - CH₃SCH₃)

Relation to Climate

- **★** CLAW Hypothesis
 - # Emissions of DMS can lead to global cooling opposing the greenhouse warming.
- * A postulated negative feedback mechanism:
 - # Greenhouse warming.
 - **# Phytoplankton growth.**
 - **# DMS flux.**
 - # Cloud formation.
 - # General cooling of surface temperatures.

Oceanic Emissions of DMS Background

- ★ Most phytoplankton species, ubiquitous in oceans, excrete DMS.
- **★** DMS production depends on phytoplankton growing conditions such as:
 - # Light.
 - # Upper ocean temperature.
 - # Phytoplankton species.
 - **# Sea surface salinity.**
 - # Mixed layer depth.
- \star Oxidized in the atmosphere to SO₂ and MSA.
- \star Further oxidation of \overline{SO}_2 to sulfate aerosol contributes to cloud condensation nuclei (CCN).
- ★ Estimated global emissions ~ 40 Tg S yr⁻¹, Andreae 1985.

Methodology

★ General procedure.

- # A database of measurements of the concentrations of DMS in surface ocean waters was compiled by Kettle et al (1996).
- # Applied the kriging technique to the data compiled by Kettle et al. to obtain gridded DMS concentrations in surface ocean waters.
- # Obtain global DMS fluxes to atmosphere by applying flux models of Liss & Merlivat (1986) and/or Wannikhof (1992).

Methodology

★ Summary of Kettle et al. compilation

9256 data points

# Coverage E	Extent (10 ⁶	km ²)
--------------	-------------------------	--------------------------

- ► 4904 in Atlantic Ocean. 74.56
- ► 3357 in Pacific Ocean. 148.92
- ► 833 in Southern Ocean. 57.89
- ► 162 in Indian Ocean. 45.38

Source

- ► 8190 points contributed by scientists
- ► 1066 points digitized from publications etc.

Other parameters included:

- ► Aqueous dimethylsulfoniopropionate (DMSP)
- ► Particulate DMSP
- ► Sea surface temperature, sampling depth, etc.

Methodology

★ Kriging

- # A geostatistical procedure to estimate gridded values from a 2-D set of points.
- # Assumes spatial homogeneity, i.e, pattern of variation is similar at all locations on the surface.
- # An excellent linear unbiased estimator.
- # Assigns low weights to distant samples and vice versa.
- # Takes into account the relative position of the samples to each other as well as the area being examined.
- # Response of the grid point = \sum (Weight * response of the spot point), where weight = 1/(distance from grid point to spot point, normalized for all the spot points).

Methodology

- # Spatial variation is quantified by the semivariogram.
- # A semi-variogram is defined as *half* of the average squared difference between the two attribute values separated by a distance h (lag):

$$Y(h) = 1/2n \sum {\{Z(x_i) - Z(x_i + h)\}^2}$$

- ► n is the number of pairs of sample points.
- ► h is the separation distance.
- Z are the attribute values.
- ► Y is the estimated spatial variation.
- # Uses optimum grid cell size for interpolation.

Methodology

- ★ Creation of the gridded DMS inventory for ACE-1
 - # For each of the four Oceanic areas in the Kettle compilation:
 - Extracted the surface ocean DMS concentrations for September to January.
 - Krigged the concentrations limiting the kriging domain by the extent of the respective ocean.
 - Merged and smoothed the four grids.
 - # Kriged Bates ACE-1 DMS surface ocean concentrations within ACE-1 experimental region.
 - # Replaced all the values within ACE-1 region in the global grid by the Bates ACE-1 grid. Smoothed concentrations at the boundaries.

Methodology

- # Transformed the cell size to $1^{\circ} \times 1^{\circ}$.
- # Repeated analysis using the sea-surface temperature.
- # Used Wannikhof's quadratic fit and the ECMWF wind speed at 10 m to estimate DMS emissions every 6 hours.

DMS Oceanic concentrations

Data from Kettle et al

DMS Oceanic concentrations

Data from Bates cruise (1995)

DMS Oceanic concentrations

Kettle data merged with Bates

DMS Oceanic Emissions for 19951101

★ Introduction

- **#Sea salt aerosol is an important component of the total atmospheric aerosol, especially in remote locations (see ACE-1 results).**
- **#Atmospheric sea salt particles are generated by the interaction of the wind and waves.**
- **#Wind speed, water temperature, air-sea temperature difference, etc. all play a role in aerosol production.**
- **#Mechanisms that can generate sea salt aerosol:**
 - Bubbles bursting from breaking waves as JET DROPS (bubble cavity is filled in) or as FILM DROPS (bubble cap bursts).
 - ► SPUME DROPS (wave shearing at high wind speeds).
- **#Drops are convected upwards by turbulent eddies.**

* Aerosol number distributions

- **#All moments can be calculated from the aerosol number distribution.**
- **#Figure 1** shows a comparison of various measurements of aerosol number distributions for two ranges of the 10 m wind speed (U_{10}) .
- **#Values of the radii are at 80% relative humidity, a** typical value for the marine environment.
- **#Important findings:**
 - ► The trend is similar among the various measurements.
 - ► The range of the values of the number distributions can be an order of magnitude at similar wind speeds.

★ Area distributions

- **#The surface area of the drops can suppress the production of new particles via nucleation.**
- #Figure 2 shows the corresponding area distributions for the previous ranges of U_{10} .
- #Graphs are on a linear scale and are equal-area plots (the actual area under a curve represents the value between two radii).

#Important findings:

- ► The main contribution to the aerosol surface area by sea salt is from particles with radii between 1 and 30 um.
- ► The variability among different measurements can be up to an order of magnitude.
- ► The main contribution at the lower wind speeds is thought to be from jet drops in the range 1-10 um.
- ► At higher wind speeds the spume mode increases at larger radii.

Figure 2

★ Flux of sea salt particles

- **#Is defined as production of particles per unit sea** surface area per unit time.
- **#Depends on many factors, the most important being:**
 - Wind speed.
 - ► Sea surface temperature.
 - Wind speed history.
 - ► Fetch.
 - ► Presence of organics.
- **#Is very difficult to measure. Even if measured well,** there is usually a high degree of variability among "similar" conditions.`

★ FLUX DETERMINATIONS

- **#The flux of sea salt particles has been predicted by:**
 - ► Laboratory measurements of aerosols produced by breaking waves that have been extrapolated via whitecap coverage to oceanic conditions.
 - ► Measurements of concentrations that have been extrapolated to fluxes assuming equilibrium (production = fallout).
 - ► Eddy-correlation measurements that can give a "direct" measurement.
 - ► Bubble spectra and knowledge of the ratio of drops/bubble.
- **#All of these predictions involve questionable assumptions or are difficult to evaluate.**
- **#Various models of the flux of sea salt particles yield** fairly different results.

Mineral Dust Aerosol

★ Importance

- #Mineral dust aerosols are an important component of the total atmospheric aerosol in arid regions.
- **#Mineral dust aerosols:**
 - ► Provide acid-neutralizing compounds.
 - ► May suppress the production of new particles via nucleation.
- **★** Two major models for the flux of wind driven dust are currently available:
 - #Tegen et al, 1994, 1995, 1996, 1997.
 - ► Global coverage.
 - ► Less detailed mechanisms.
 - **#Marticorena et al., 1995, 1997.**
 - Applied to African regions only.
 - More detailed mechanisms.
- **★** Collaborations with these investigators are in progress.